skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nurbekyan, Levon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Control Barrier Functions (CBFs) are an effective methodology to ensure safety and performative efficacy in real-time control applications such as power systems, resource allocation, autonomous vehicles, robotics, etc. This approach ensures safety independently of the high-level tasks that may have been pre-planned off-line. For example, CBFs can be used to guarantee that a vehicle will remain in its lane. However, when the number of agents is large, computation of CBFs can suffer from the curse of dimensionality in the multi-agent setting. In this work, we present Mean-field Control Barrier Functions (MF-CBFs), which extends the CBF framework to the mean-field (or swarm control) setting. The core idea is to model a population of agents as probability measures in the state space and build corresponding control barrier functions. Similar to traditional CBFs, we derive safety constraints on the (distributed) controls but now relying on the differential calculus in the space of probability measures. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Mean-field control (MFC) problems aim to find the optimal policy to control massive populations of interacting agents. These problems are crucial in areas such as economics, physics, and biology. We consider the nonlocal setting, where the interactions between agents are governed by a suitable kernel. For N agents, the interaction cost has O(N2) complexity, which can be prohibitively slow to evaluate and differentiate when N is large. To this end, we propose an efficient primal-dual algorithm that utilizes basis expansions of the kernels. The basis expansions reduce the cost of computing the interactions, while the primal-dual methodology decouples the agents at the expense of solving for a moderate number of dual variables. We also demonstrate that our approach can further be structured in a multi-resolution manner, where we estimate optimal dual variables using a moderate N and solve decoupled trajectory optimization problems for large N. We illustrate the effectiveness of our method on an optimal control of 5000 interacting quadrotors. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. We propose a neural network approach that yields approximate solutions for high-dimensional optimal control problems and demonstrate its effectiveness using examples from multi-agent path finding. Our approach yields controls in a feedback form, where the policy function is given by a neural network (NN). Specifically, we fuse the Hamilton-Jacobi-Bellman (HJB) and Pontryagin Maximum Principle (PMP) approaches by parameterizing the value function with an NN. Our approach enables us to obtain approximately optimal controls in real-time without having to solve an optimization problem. Once the policy function is trained, generating a control at a given space-time location takes milliseconds; in contrast, efficient nonlinear programming methods typically perform the same task in seconds. We train the NN offline using the objective function of the control problem and penalty terms that enforce the HJB equations. Therefore, our training algorithm does not involve data generated by another algorithm. By training on a distribution of initial states, we ensure the controls' optimality on a large portion of the state-space. Our grid-free approach scales efficiently to dimensions where grids become impractical or infeasible. We apply our approach to several multi-agent collision-avoidance problems in up to 150 dimensions. Furthermore, we empirically observe that the number of parameters in our approach scales linearly with the dimension of the control problem, thereby mitigating the curse of dimensionality. 
    more » « less
  5. Mean field games (MFG) and mean field control (MFC) are critical classes of multiagent models for the efficient analysis of massive populations of interacting agents. Their areas of application span topics in economics, finance, game theory, industrial engineering, crowd motion, and more. In this paper, we provide a flexible machine learning framework for the numerical solution of potential MFG and MFC models. State-of-the-art numerical methods for solving such problems utilize spatial discretization that leads to a curse of dimensionality. We approximately solve high-dimensional problems by combining Lagrangian and Eulerian viewpoints and leveraging recent advances from machine learning. More precisely, we work with a Lagrangian formulation of the problem and enforce the underlying Hamilton–Jacobi–Bellman (HJB) equation that is derived from the Eulerian formulation. Finally, a tailored neural network parameterization of the MFG/MFC solution helps us avoid any spatial discretization. Our numerical results include the approximate solution of 100-dimensional instances of optimal transport and crowd motion problems on a standard work station and a validation using a Eulerian solver in two dimensions. These results open the door to much-anticipated applications of MFG and MFC models that are beyond reach with existing numerical methods. 
    more » « less